If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-16x-18=0
a = 7; b = -16; c = -18;
Δ = b2-4ac
Δ = -162-4·7·(-18)
Δ = 760
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{760}=\sqrt{4*190}=\sqrt{4}*\sqrt{190}=2\sqrt{190}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{190}}{2*7}=\frac{16-2\sqrt{190}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{190}}{2*7}=\frac{16+2\sqrt{190}}{14} $
| 8p+9=9 | | 38-2x=2x+14 | | 30-9d=(-8)(3D+4) | | -3/5+x=1/6 | | 32=b×8 | | 6(1-3n)-2(2n-1)=-18n | | 32r=34 | | 360=2x-5+x+10 | | -7/6y=28 | | 3=3y/9 | | 4(2n-2)+2(1-n)=9+n | | 8(6f-9)=(-27)-3f | | X-1/2-x-2/3-x-3/4=5-×/5 | | 6x-6*2=11x-1 | | 31=9+7(v+4) | | 5(n-3)=n+1 | | (x/3)=(113) | | 7y/2=-49 | | 56/x=4/9 | | 88=u/9=80 | | 20+4x=-18-20(2x+2) | | 17x+1+6x-5=180 | | 3/8(10(x-5)+x)=4x-25/4 | | 8r+5r=(-35) | | 2(b+12)=162b+12=16 | | 4+2n=3(n-2)+1 | | -4u=8/3 | | X-1÷2-x-2÷3-x-3÷4=5-x÷5 | | -4=2(x+2) | | (4x+36)°=(6x+8)° | | -3(x-5)=x+4 | | -12(x-20)=2x+8 |